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Abstract
The disordered configuration, band structures, density of states, Mulliken population, elastic
constants, zone center optic phonon modes and their Grüneisen parameters of M(CN)2

(M = Cd, Zn) have been studied for possible cyanide-ordering patterns by the first-principles
plane-wave pseudopotential method based on density functional theory. Total energy
calculations predict that MC2N2–MC2N2 is the most favorable configuration for Cd(CN)2

whereas all three possible configurations are near equally favorable for Zn(CN)2. Effective
charges and bond order analyses reveal that the M(CN)2 (M = Cd, Zn) frameworks include
much stiffer C≡N and weaker M–C/N bonds, which account for the flexing of the M–CN–M
linkage during the transverse motion of the cyanide-bridge. The transverse translational and the
librational modes give rise to negative Grüneisen parameters and therefore contribute to the
negative thermal expansion. Transverse vibrations of the C and N atoms in the same (transverse
translational modes) or opposite (librational modes) directions have the same effect of drawing
the anchoring metal atoms closer. Among all the optical phonon modes, the lowest-energy
transverse translational optical modes which are neither Raman nor infrared active in Cd(CN)2

and Zn(CN)2 give rise to the largest contribution to the negative thermal expansion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Materials with negative thermal expansion (NTE) have
received considerable attention due to scientific curiosity and
technological interest. Increasing families of such materials
such as AM2O8 (A = Zr, Hf; M = W, Mo) [1–3], AM2O7

(A = Zr; M = V, P) [4], AM3O12 (A = Sc, Y, etc;
M = W, Mo) [5], AO2 (zeolites, AlPO4-17) [6, 7], AMO5

(NbOPO4) [8, 9] and A2O (Cu2O, Ag2O) [10, 11] have been
reported. Recently, M(CN)2 (M = Cd, Zn) [12–14] and
Prussian blue families [15–17] were found to have strong
NTE. Among these families, Cd(CN)2 and Zn(CN)2 were
found to have largest and isotropic NTE coefficients which
are respectively −20.4 × 10−6 K−1 from 150 to 375 K and

3 Author to whom any correspondence should be addressed.

−16.9 × 10−6 K−1 from 25 to 375 K [13], approximately
twice as large as that of ZrW2O8 [1]. Their structure can
be regarded as a framework of metal–cyanide–metal (M–
CN–M′) polyhedra. Each metal center binds four cyanide
ligands in a tetrahedral arrangement and each ligand acts as
a linear bridge between two metal centers. There have been
conflicting reports on the degree of cyanide ordering in the
M(CN)2 framework structure with fully ordered in which
MC4 and MN4 tetrahedra alternate [18], or fully disordered
in which MCx N4−x tetrahedra are interlinked due to the C–
N orientational disorder [12, 19]. The space group determined
from single crystal x-ray diffraction analysis was P 4̄3m (fully
ordered) and exchanging C and N atoms did not significantly
alter the refinement parameters [18]. A neutron diffraction
study [12] found that a disordered structure with space group
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Pn3̄m [20] fitted equally well to the diffraction pattern.
Although further studies by x-ray diffraction [13, 14] and
Raman and infrared spectroscopy [21] supported statistical C–
N orientational disorder in both Cd(CN)2 and Zn(CN)2, the
origin for the possible ordered or disordered structures remains
unclear and needs to be clarified.

Goodwin et al [13] analyzed the intrinsic geometric
flexibility of framework structures of Znx Cd1−x(CN)2 using
a reciprocal-space dynamical matrix approach and suggested
that a large number of low energy rigid unit modes (RUMs)
gave rise to the extraordinarily large NTE behavior, regarding
ZnCx N4−x tetrahedra as rigid units based on the assumption
that M–C/N bonding possesses significant covalent character.
Chapman et al [14] probed the instantaneous structure of
Zn(CN)2 using atomic pair distribution function analysis of
high energy x-ray scattering data (100–400 K) and suggested
that the population of transverse vibrational modes of the
bridging atoms was the mechanism underlying the NTE.
Dispersionless rigid unit modes at about 2 meV (∼16 cm−1)

were also observed by time of flight inelastic neutron scattering
from powdered samples of Zn(CN)2 [22]. The Raman and
infrared spectroscopic study in Zn(CN)2 gave the lowest
optical phonon mode at 178 cm−1 (∼22 meV) [21]. Therefore,
a systematic study on the geometric and electronic structure,
bonding character and phonon modes of these materials is
necessary for understanding their NTE mechanisms.

In this paper, we present a systematic study on the
M(CN)2 structures with cyanide-bridges, aimed at the
above mentioned problems using the first-principles plane-
wave pseudopotential method based on density functional
theory [23]. Besides the possible ordered or disordered
structures from minimum energy calculations, the electronic
structure, bond character and atomic vibrations are studied
with an attempt to understand the super-NTE behavior of these
materials.

2. Method of calculation

The first-principles calculations on electronic structure,
bonding and elastic constants were performed using the
CASTEP code [24] with ultrasoft pseudopotential plane-wave
basis sets. The exchange and correlation (XC) energy of the
electrons was described by GGA of PBE [25] and LDA of
CA-PZ [26]. Ultrasoft Vanderbilt-type pseudopotentials [27]
with electronic configurations of Cd 4d105s2, Zn 3d10 4s2,
C 2s2 2p2 and N 2s2 2p3 were used. The maximum plane-
wave cutoff energy was taken as 600 eV and the numerical
integration of the Brillouin zone was performed by using a
4 × 4 × 4 Monkhorst–Pack k-point sampling [28]. As far as
the symmetry of the crystals investigated was concerned, the
numbers of k-point was not large. However it was sufficient
here as both materials investigated turn out to be insulators and
the k-point meshes to 6×6×6 changed the total energy by less
than 0.01 eV/atom. The cutoff energy and k-point sampling
parameters were tested for convergence. The tolerance
of 5 × 10−7 eV/atom was adopted for the self-consistent
calculations to control the electronic minimization algorithm.
Geometry energetic minimization was accomplished by using

convergence thresholds of 5 × 10−6 eV/atom for total energy,
0.01 eV Å

−1
for maximum force, 0.02 GPa for pressure

and 5 × 10−4 Å for displacement. Geometry optimization
was performed without symmetry constraints. The minimum
total energy of each structure was achieved by automatically
relaxing the lattice parameters and atomic positions using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [29].
A Monkhorst–Pack mesh of 8×8×8 special k-points sampling
was chosen while the partial density of states (PDOS) was
calculated. Mulliken overlap populations [30] were performed
by using a projection of the plane-wave electronic states onto
a localized linear combination of atomic orbitals (LCAO)
basis set and integrated with a distance cutoff of 3 Å. The
convergence thresholds of 1.0 × 10−6 eV/atom, 0.002 eV Å

−1

and 1.0 × 10−4 Å for energy change, maximum force and
maximum displacement were used for the elastic constants
calculation.

The zone center phonon modes and phonon DOS were
also calculated using CASTEP but with the norm-conserving
pseudopotentials [31] and the local density approximation
(LDA of CA-PZ). The maximum plane-wave cutoff energy
and the k-points sampling were set as 900 eV and 4 × 4 × 4,
respectively. First, the geometry optimization relaxing both
the lattice parameters and the atomic positions were performed
with the same convergence tolerance mentioned above. Next,
the vibrational properties were calculated using the linear
response methodology [32] with the convergence criterion of
1 × 10−5 eV/atom for the electronic eigenvalues. The zone
center phonon frequencies obtained under different hydrostatic
pressures (from 0 to 1.0 GP with increment of 0.2 GP) were
used to calculate the Grüneisen parameters of the phonon
modes for Cd(CN)2 and Zn(CN)2. A 4 × 4 × 4 Monkhorst–
Pack grid was used which corresponded to an actual spacing
of 0.04 Å

−1
while the phonon density of states of Zn(CN)2

was calculated. The integration method interpolating the
eigenvalues from the CASTEP calculation onto a finer k-point
grid of about 200 × 200 × 200 was applied while the phonon
DOS was represented (see figure 5).

3. Results and discussion

In the following paragraphs, the systematic investigation of
geometric and electronic structure, bonding character and
atomic vibrations (phonon modes) for the M(CN)2 framework
based on the first-principles calculations are presented. The
NTE mechanisms are discussed based on our bonding
character and phonon mode analyses.

3.1. Crystal structures

Considering all possible MCxN4−x tetrahedron geometries in
the crystal, three unit cells were proposed here for the local
minimum configuration of the M(CN)2 (M = Cd, Zn) crystal.
Figures 1(a)–(c) show the unit cells with cyanide-bridged MC4

and MN4 tetrahedra, with MC3N and MCN3 tetrahedra and
with two MC2N2 tetrahedra, respectively. The results for
the equilibrium lattice parameters, cell volumes, total energy
of the three possible atomic arrangements of Cd(CN)2 and
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Figure 1. Ball-and-stick models of M(CN)2 (M = Cd, Zn) for (a) MC4–MN4, (b) MCN3–MC3N, and (c) MC2N2–MC2N2 tetrahedra
geometries.

Table 1. Crystal structure and electronic properties of Cd(CN)2. ‘M4’, ‘M13’ and ‘M22’ represent the tetrahedra configuration of
CdC4–CdN4, CdCN3–CdC3N and CdC2N2–CdC2N2, respectively.

LDA–CA-PZ GGA–PBE

Model M4 M13 M22 M4 M13 M22 Exp. [13]

a (Å) 6.3163 6.3147 6.3969 6.4928 6.49158 6.5466 6.3249
b (Å) 6.3163 6.3147 6.3969 6.4928 6.49128 6.5469 6.3249
c (Å) 6.3162 6.3147 6.1433 6.4928 6.49138 6.3748 6.3249

Cell volume (Å
3
) 251.99 251.80 251.38 273.71 273.53 273.22 253.02

Energy/unit cell (eV) −4271.354 −4271.391 −4271.404 −4268.038 −4268.087 −4268.103
Band gap (eV) 5.85 5.78 5.73 6.00 5.93 5.91

Table 2. Crystal structure and electronic properties of Zn(CN)2. ‘M4’, ‘M13’ and ‘M22’ represent the tetrahedra configuration of
ZnC4–ZnN4, ZnCN3–ZnC3N and ZnC2N2–ZnC2N2, respectively.

LDA–CA-PZ GGA–PBE

Model M4 M13 M22 M4 M13 M22 Exp. [12, 13]

a (Å) 5.7925 5.7968 5.8126 5.9497 5.9547 5.9734 5.9227
5.9328

b (Å) 5.7925 5.7969 5.8126 5.9497 5.9548 5.9735 5.9227
5.9328

c (Å) 5.7925 5.7969 5.7714 5.9497 5.9548 5.9231 5.9227
5.9328

Cell volume (Å
3
) 194.36 194.79 195.00 210.61 211.15 211.35 207.76

208.82
Energy/unit cell (eV) −5127.949 −5127.928 −5127.921 −5121.644 −5121.645 −5121.645
Band gap (eV) 5.63 5.53 5.45 5.78 5.71 5.64

Zn(CN)2 unit cells calculated by GGA and LDA together with
the experimental results are shown in table 1 and table 2,
respectively. It is known that LDA and GGA may slightly
underestimate and overestimate the lattice parameters or cell
volumes.

As shown in table 1, the calculated lattice parameters
and equilibrium volumes in optimized unit cells with CdC4–
CdN4 or CdC3N–CdCN3 tetrahedra by LDA agree better with
experimental values, and the discrepancy is less than 0.65%.
The lowest total energy is found for the unit cell with CdC2N2–
CdC2N2 tetrahedra by both LDA and GGA calculations,
indicating that Cd bonding to two C and two N atoms is
the most favorable among all the possible configurations.
However, the difference of total energy among the relaxed unit
cells is very small, less than 0.05 eV by LDA and 0.065 eV by
GGA. It implies that all MCxN4−x tetrahedra are quite possibly
coexisting with CdC2N2–CdC2N2 tetrahedra dominating when
a Cd(CN)2 sample is prepared. The earlier proposed ordered
Cd(CN)2 structure would contain equal amounts of CdC4 and
CdN4 tetrahedra [18]. However, 113Cd NMR measurements for

Cd(CN)2 showed that the sample was dominated by CdC2N2

and the existence of CdC4, CdCN3, CdC2N2, CdC3N and CdN4

was also revealed [19]. Our total energy calculations not only
agree well with the experimental results but also explain why
the species coexist with CdC2N2 dominating.

As shown in table 2, the lattice parameters of Zn(CN)2

calculated by GGA agree better with the experimental values.
The total energies calculated for different unit cells of Zn(CN)2

show an even smaller discrepancy, less than 0.028 eV by
LDA and 0.001 eV by GGA. Therefore, it is difficult to
predict which tetrahedral combination of ZnCx N4−x is most
preferred. The C–N orientational disorder in M(CN)2 (M = Cd
or Zn) structure can be attributed to the very small energy
discrepancy in MCx N4−x tetrahedra. This disorder character of
structure was also found in some other compound with single
metal centers and cyanide-bridges, such as Ga(CN)3 [33] and
AgCN [34], but not in the Prussian blue family [15–17] in
which two kinds of metal centers exist in the polyhedra, in
which each metal center is surrounded either by carbon or by
nitrogen atoms.
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Figure 2. Calculated band structure of (a) Cd(CN)2 and (b) Zn(CN)2 with MC2N2–MC2N2 tetrahedra by LDA.

Figure 3. Calculated total DOS and PDOS of (a) Cd(CN)2 and (b) Zn(CN)2 with MC2N2–MC2N2 tetrahedra by LDA.

3.2. Electronic and bonding characters

3.2.1. Band structure, density of states and partial density
of states. The calculated electronic structures by LDA and
GGA for the three possible configurations of Cd(CN)2 and
Zn(CN)2 are similar and hence we present in figures 2(a)
and (b) only the band structures of Cd(CN)2 and Zn(CN)2

with the configuration of cyanide-bridged MC2N2 tetrahedra,
respectively. The band gap values are listed in tables 1 and 2.
Both are indirect band gap insulators with gap widths of over
5.5 eV. This should be considered as the lowest limit since it is
well known that both LDA and GGA generally underestimate
the band gap of insulators.

Three valence bands appear around −15, −5 eV and
between −3 and 0 eV, respectively and a conduction band
above 5.5 eV. PDOS and total DOS calculations (figure 3) give
an insight into the origins of these bands. The 2s and 2p orbitals
of C and N hybridize and contribute to the lowest valence band.
The bands around −5 eV and between −3 and 0 eV originate

from Cd 4d or Zn 3d, C/N 2s and 2p orbitals. Moreover, C/N
2p orbitals contribute to the lower while Cd 5s and 4p or Zn
4s and 3p orbitals to the higher part of the conduction band.
The strong hybridization and highly localized character of the
C/N 2s and 2p orbitals around −15 eV suggest that this band
corresponds to the C≡N bonds, which are much stronger than
the M–C/N bonds originating from the hybridization of the Cd
4d or Zn 3d with the C/N 2s and 2p orbitals between −7 and
0 eV. It should be pointed out that the C≡N bond is stronger
in Zn(CN)2 than in Cd(CN)2 and the same happens for the
Zn–C/N and Cd–C/N bonds because of the lower energy of the
bonds in Zn(CN)2.

3.2.2. Effective charge and bond order. In order to give a
quantitative analysis of the bonds, Mulliken effective charges
and the bond order (also called the overlap population) values
for different unit cells were calculated and are shown in
table 3. The effective charges are the total number of calculated
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Table 3. Calculated Mulliken population of Cd(CN)2 and Zn(CN)2. ‘M4’ and ‘M22’ represent the tetrahedra configuration of MC4–MN4

and MC2N2–MC2N2 (M = Cd or Zn), respectively.

LDA GGA

Model

M4 M22 M4 M22 Exp. [13]

Cd(CN)2

Effective charges (electrons)

Cd(1) 10.77 10.93 10.72 10.87
Cd(2) 11.09 10.93 11.02 10.87
N 5.49 5.47 5.50 5.48
C 4.05 4.07 4.07 4.09

Bond order (bond length (Å))
C–N 1.76 (1.173) 1.77 (1.172) 1.74 (1.181) 1.75 (1.180) (1.200)
Cd–N 0.30 (2.132) 0.28 (2.163) 0.28 (2.202) 0.25 (2.241) (2.138)
Cd–C 0.43 (2.166) 0.45 (2.142) 0.40 (2.239) 0.42 (2.209) (2.138)

Zn(CN)2

Effective charges (electrons)

Zn(1) 10.74 10.95 10.71 10.9
Zn(2) 11.17 10.95 11.09 10.9
N 5.48 5.46 5.49 5.47
C 4.05 4.06 4.06 4.08

Bond order (bond length (Å))
C–N 1.82 (1.172) 1.82 (1.172) 1.79 (1.180) 1.79 (1.179) (1.164)
Zn–N 0.41 (1.901) 0.39 (1.915) 0.38 (1.965) 0.36 (1.987) (1.987)
Zn–C 0.52 (1.943) 0.53 (1.937) 0.49 (2.008) 0.50 (1.995) (1.987)

Figure 4. Electronic charge density on a (011̄) plane of (a) Cd(CN)2
and (b) Zn(CN)2 with MC2N2–MC2N2 tetrahedra.

valence electrons on each atom and provide information
on charge transfer. The bond order (BO) is a convenient
way to quantify the strength of bonding between a pair of
atoms [35]. A value of zero corresponds to an ideal ionic
bond while larger values indicate a more covalent nature of the
bond [30]. The BO values, depending on the configurations
and calculation method, of C≡N are 1.74–1.77 in Cd(CN)2

and 1.79–1.82 in Zn(CN)2, which are much higher than
those of Cd–C/N (0.40–0.45/0.25–0.30) and Zn–C/N (0.49–
0.53/0.36–0.41), indicating a highly covalent C≡N and the
ionic nature of M–C/N bonds. It means that the C≡N bonds
are much stronger than the Cd/Zn–C/N bonds. It is found that
the C≡N bonds in CdC2N2–CdC2N2 are slightly stronger than
in CdC4–CdN4 configurations while they have no difference in
ZnC2N2–ZnC2N2 and ZnC4–ZnN4. These are consistent with
our minimum energy, band structure and PDOS analysis. In
addition, it is also found the M–C bonds are stronger than the
M–N bonds. This is further evidenced by the charge transfer
from metals to C or N, for example, 0.91 electrons from Cd to
C and 1.23 electrons from Cd to N in the unit cell of MC4–MN4

by LDA.
In order to reveal the bonding nature of M–C and M–N

further, we present in figure 4 the distribution of valence charge
densities on the (011̄) plane of Cd(CN)2 and Zn(CN)2 unit
cells with MC2N2–MC2N2 tetrahedra configuration. Strong

Figure 5. The comparison of the calculated (black line, left vertical
axis) and measured [22] (red circles, right vertical axis) phonon
density of states in Zn(CN)2.

covalent bonding between C and N atoms is evidenced
by the high charge density distribution along the C–N
direction. There are spherical-like charge density contours
around the metal cations and nonzero charge densities (about
0.4 electrons Å

−3
) in the midpoints between the metals and

C/N atoms, confirming the higher ionic bonding nature of M–
C/N. The Zn–C/N bonds have a higher covalent degree and are
hence slightly stronger than the Cd–C/N bonds because more
valence charges are distributed in the mid area between Zn and
C/N atoms, which is consistent with the higher overlapping of
the electronic states between Zn and C/N atoms indicated by
the PDOS of Zn(CN)2.

3.2.3. Elastic properties. The elastic constants and bulk
modulus (B0) of Cd(CN)2 and Zn(CN)2 with fully ordered
units (space group P 4̄3m) were calculated by LDA and
GGA and listed in table 4 together with the calculated and
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Table 4. Calculated elastic constants, bulk moduli of Cd(CN)2 and Zn(CN)2 with MC4–MN4 tetrahedra. The theoretical and experimental
values of Zn(CN)2 in [36] are listed for comparison.

This work Ref. [36]

Cd(CN)2 Zn(CN)2 Zn(CN)2

Compound LDA GGA LDA GGA Calc. Expt.

Elastic constants
c11 43.40 34.83 59.47 48.50
c44 3.38 5.97 16.18 11.91
c12 40.97 32.13 54.52 43.23

Bulk modulus (GP) 41.8 33.03 56.2 45.0 88 25 ± 11
Compressibility 0.024 0.018 0.018 0.022

Table 5. Calculated phonon frequencies in ordered Cd(CN)2 and Zn(CN)2 with MC4–MN4 tetrahedra (i.e. space group P4̄3m), their
classification, mode assignments and Grüneisen parameters. Among the translational modes of CN ions, ‘⊥’ represents the transverse motion
away from the M · · · M ′ axis, while ‘‖’ represents the longitudinal motion along the M · · · M ′ axis. The theoretical and experimental values
of Zn(CN)2 in [36] and [21] are also listed for comparison.

Calc. Expt.

This work Ref [36] Refs [21, 36]

Cd(CN)2 Zn(CN)2 Zn(CN)2 Zn(CN)2

Modes Symmetry Freq. (cm−1) γ1 Freq. (cm−1) γ1 Freq. (cm−1) γ1 Freq. (cm−1) γ1

Cd or Zn lattice F2 156 (IR, R) 1.37 220 (IR, R) 1.33 388 0.45 216 (R) −0.50(15)

CN trans. F1 40 −31.4 51 −22.7 143 −14.3
⊥ E 124 (R) −1.07 164 (R) −0.65 255 −1.5

F2 126 (IR, R) −1.73 174 (IR, R) −1.1 352 −0.13 178 (IR)
‖ A1 458 (R) 1.91 505 (R) 1.65 564 1.1

F2 444 (IR, R) 1.60 509 (IR, R) 1.96 596 1.4 461 (IR)

CN libr. F1 228 −2.43 259 −2.52 288 −8.0
F2 286 (IR, R) −1.18 341 (IR, R) −0.86 326 −7 339 (R)
E 290 (R) −0.94 349 (R) −0.64 357 −6.2 343 (R) −0.54(2)

CN int. F2 2191 (IR, R) 0.22 2207 (IR, R) 0.29 2232 1.5 2218 (IR)
A1 2197 (R) 0.22 2216 (R) 0.30 2245 1.5 2221 (R) 0.14(1)

experimental data for Zn(CN)2 in [36]. The elastic constants
in table 4 obey the mechanical stability conditions in a cubic
crystal, such as c11 − c12 > 0, c11 > 0, c44 > 0, c11 +
2c12 > 0 and c12 < B < c11. Cd(CN)2 with a less rigid
framework than Zn(CN)2 has smaller bulk modulus and lower
shear modulus. These framework structures are generally quite
soft with relatively low shear modulus (c44).

3.3. Vibrational properties

It is not straightforward to incorporate random disorder in
ab initio calculations, so the ordered structure of M(CN)2

with MC4–MN4 tetrahedra (i.e. space group P 4̄3m) was used
for the calculation and investigation of phonon modes due
to its higher symmetry. The calculated zone center optic
phonon frequencies and the corresponding identification of
each mode as Raman and/or IR active are shown in table 5. The
experimental data for Zn(CN)2 in [21, 36] are also listed for
comparison. Group theory analysis for M(CN)2 (space group
P 4̄3m) predicts eleven optical modes in which nine are Raman
and five are IR active. According to the phonon eigenvectors
and group theory analysis [21], these modes can be classified
into 5 translational (external), 3 librational (external), 2 internal
(stretching) vibrations of the C≡N units and 1 lattice vibration
of the metal ions.

In order to investigate the role of different phonons
on thermal expansion, the first-principles calculations were
performed at different hydrostatic pressures and the phonon
frequencies as a function of pressure were obtained. As the
pressure is increased to above 0.8 GP for Cd(CN)2 and 1.0 GP
for Zn(CN)2, the ω versus P dependence is nonlinear for
the lowest-energy phonon modes (i.e. 40 cm−1 for Cd(CN)2

and 51 cm−1 for Zn(CN)2), and hence not considered in
obtaining the Grüneisen parameters γi . With the value of B0

(where B0 is taken as 45 GP for Zn(CN)2 and 33 GP for
Cd(CN)2) calculated by us, the Grüneisen parameters (γi =
B0ω

−1
i ∂ωi/∂ P) of the phonon modes were calculated and

shown in table 5. It is worth noting that 6 out of the 11
optical modes exhibit negative Grüneisen parameters, which
correspond to translational or librational motions of C≡N
units.

The linear thermal expansion coefficient α can be
written in terms of the Grüneisen parameters as α =

k
3V B0

∑
i piγi(

h̄ωi
kT )2 exp(h̄ωi/kT )[exp(h̄ωi/kT )−1]−2, where

V is the unit cell volume containing two formula units of
M(CN)2, pi is the degeneracy of the phonon mode with
frequency ωi at the Brillouin zone center. By using the
equation, the thermal expansion coefficients at 5 K are
calculated to be −21 × 10−6 K−1 for Zn(CN)2 and −39 ×
10−6 K−1 for Cd(CN)2, in agreement with the experimental
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values [13]. The discrepancies of γi and α between experiment
and theory are mainly due to the fact that our model with
ordered structure is based on a 0 K model. It does not
quantitatively account for dynamical processes and distortion,
which must present at higher temperatures and pressures.

The calculated lowest-energy mode in [36] ended
at 143 cm−1 for Zn(CN)2, which was assigned to the
experimentally observed IR active mode at 178 cm−1.
However, the lowest-energy optic phonon modes calculated by
us are at 51 cm−1 for Zn(CN)2 and 40 cm−1 for Cd(CN)2,
both of which are Raman and IR inactive. As can be seen
from tables 4 and 5, the mode frequencies, their Grüneisen
parameters and bulk modulus calculated by us are much closer
to the experimental values than those reported in [36].

3.4. Negative thermal expansion mechanisms

The phonon modes are directly responsible for thermal
expansion in a material. Further investigation on the
above phonon’s eigenvectors reveals that the translational
modes of C≡N units can be subdivided into two subclasses
corresponding to the transverse motion away from the
M · · · M ′ axis and the longitudinal motion along the M · · · M ′
axis. The longitudinal modes at 444 and 458 cm−1 for
Cd(CN)2 and 505 and 509 cm−1 for Zn(CN)2 are from the
motions along the M · · · M ′ axis of the C≡N rigid unit.
They have positive Grüneisen parameters and hence do not
contribute to the negative thermal expansion. Nevertheless, the
transverse translational modes at 40, 124 and 126 cm−1 for
Cd(CN)2 and at 51, 164 and 174 cm−1 for Zn(CN)2 from the
motions perpendicular to the M · · · M ′ axis of the C≡N rigid
unit and the librational modes at 228, 286 and 290 cm−1 for
Cd(CN)2 and at 259, 341 and 349 cm−1 for Zn(CN)2 give rise
to negative Grüneisen parameters and therefore contribute to
the negative thermal expansion. Transverse vibrations of the
C and N atoms in the same (transverse translational modes)
or opposite (librational modes) directions have the same effect
of drawing the anchoring metal atoms closer. The lowest-
energy optic phonon modes at 40 and 51 cm−1 possess the
largest negative Grüneisen parameters (−31.4 for Cd(CN)2

and −22.7 for Zn(CN)2) and therefore they have the largest
contribution among all the optical phonons to the negative
thermal expansion for Cd(CN)2 and Zn(CN)2. In addition, the
calculated Grüneisen parameters explain also why Cd(CN)2

has a larger NTE coefficient than Zn(CN)2 [13].
In ideal geometries, M(CN)2 topologies contain linearly

bridged coordination polyhedra, i.e. M–CN–M in equilibrium
is arranged at 180◦. As discussed in section 3.2, C≡N bonds
are much stiffer than the M–C/N bonds. The weaker M–
C/N bonds are expected to decrease the energy of motion of
the C/N atoms perpendicular to the M–CN–M axis, favoring
strong transverse motion of the cyanide-bridge and resulting
in nonlinear M–CN–M geometries and a contraction in non-
nearest-neighbor distances. The NTE coefficient of Zn(CN)2

being smaller than that of Cd(CN)2 can be attributed to the
correlation between bond strength and vibrational bending
flexibility. The Zn–C/N bonds are stronger than the Cd–C/N
bonds and therefore more effectively dampen the transverse
vibrations of the carbon and nitrogen atoms.

Besides optical phonons, acoustic phonons may also
contribute to the NTE effect. Inelastic neutron scattering
revealed a lowest-energy peak near 2 meV (∼16 cm−1)

which has also a negative Grüneisen parameter [22]. We
calculated the phonon density of states in Zn(CN)2 (figure 5)
and confirmed the existence of this mode. This mode can not
be attributed to a zone center optical phonon mode since the
lowest optical mode ends up at 51 cm−1 by our calculation.
It can be attributed to a transverse acoustic mode from the
dispersion curves and has a large contribution to the NTE
coefficient of Zn(CN)2 [37].

4. Conclusion

In conclusion, we have carried out a systematic investigation
on the geometric and electronic structures, bonding characters,
elastic constants and zone center phonon modes of Cd(CN)2

and Zn(CN)2 using the first-principles method. The total
energy calculations on different unit cells indicate that
their disordered structures originate from the slight energy
differences of MCx N4−x tetrahedra. Both crystals are
insulators with indirect band gaps of over 5.5 eV and have a
relatively low bulk modulus. Effective charges and band order
analyses reveal that the M(CN)2 (M = Cd, Zn) frameworks
include much stiffer C≡N and weaker M–C/N bonds, which
account for the flexing of the M–CN–M linkage during the
transverse motion of the cyanide-bridge. The transverse
translational and the librational modes give rise to negative
Grüneisen parameters and therefore contribute to the negative
thermal expansion. Transverse vibrations of the C and N
atoms in the same (transverse translational modes) or opposite
(librational modes) directions have the same effect of drawing
the anchoring metal atoms closer. Among all the optical
phonon modes, the lowest-energy transverse translational
modes at 40 or 51 cm−1 which are neither Raman nor
infrared active in respectively Cd(CN)2 and Zn(CN)2 give
rise to the largest contribution to the NTE effect. Besides
the mentioned optical phonons, the large contribution from
transverse acoustic phonons to NTE mechanisms is obvious.
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